Wednesday, March 5, 2014

More on Peirce's Continuum

Continuing from this post, here's more from reading further into this book.

In section 1.3 he talks of the general very much like Bryant's or DeLanda's withdrawn or virtual. E.g., "whatever is free of particularizing attachments, determinative, existential or actual. The general is what can live in the realm of possibilia" (10). He sees the continuum as in the general category which he relates to Peirce's thirdness. It is woven with secondness (determinacy and actuality) and firstness (indetermination and chance). However, apparently unlike Bryant's withdrawn and more like DeLanda's virtual, the general continuum is "homogenized and regularized, overcoming and melting together all individual distinctions" (10).

He quotes Peirce on 12, seeming to further support the above, where the continuum is supermultitudinous and as such "individuals are no longer distinct from one another. [...] They have no existence [...] except in their relations to one another. They are no subjects, but phrases expressive of the properties of the continuum."


Near the end of chapter one he's talking about different logics. The law of the excluded middle does not apply to a general logic of possibilia, whereas it does to the particular logic of the actual. However there is an intermediate kind he calls neighborhood logic which seems closer to the general kind, in that it has more to do with those boundaries where something is and is not of a particular kind. And it is here that multitudinous points in possibilia are described as "infinitesimal monads" (24). I'm not sure if this is something like attractors that exist in the virtual; or actual, individual suobjects of the Bryant kind. And/or both, in that any given substantive suobject is a mix of virtual and actual, yet an autonomous individual nonetheless. But only in this intermediate "neighborhood?"

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.